Tech Tip: Calculating the Maximum Wire Bundle Diameter

Use the formula provided to calculate the maximum wire bundle diameter for your VPC product. From this formula, the table below offers a sampling of the maximum number of wires that will fit in the oblong bushing.

Wire bundle diameter (B) should not exceed the

Formula to calculate approximate wire bundle diameter:

$\mathrm{B}=1.2 \mathrm{~V}\left(\mathrm{~N}_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{N}_{2} \mathrm{~d}_{2}{ }^{2}+\mathrm{N}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}}{ }^{2}\right)$		
$B=$ Wire bundle diameter	$N_{1}=$ Number of first wire type $\mathrm{N}_{2}=$ Number of second wire type $N_{n}=$ Number of $n{ }^{\text {th }}$ wire type	$d_{1}=$ Outside Diameter of first wire type $\mathrm{d}_{2}=$ Outside Diameter of second wire type $d_{n}=$ Outside Diameter of $n^{\text {th }}$ wire type

i2 Micro iCon Oblong Bushing Effective Diameter* $(\mathrm{A})=.82^{\prime \prime}$ [20.82]

iCon Oblong Bushing Effective Diameter* $(\mathrm{A})=1.18$ " [29.97] iCon Oblong Bushing Efective Diamer*(A) $118^{\prime \prime}[29.97]$
iConEMI and iCon with Threaded Coupling Adapter Oblong Bushing Effective Diameter* $(\mathrm{A})=1.37$ " [34.7]
iCon XL Oblong Bushing Effective Diameter* $(\mathrm{A})=$ 1.95" [49.53]
iCon960 Oblong Bushing Effective Diameter* $(\mathrm{A})=$ 1.70" [43.1]

Wire Type	Outside Diameter	iCon \# Wires	iCon XL \# Wires	iCon960 \# Wires	iConEMI \# Wires	i2 \# Wires
24 AWG	$.049[1.24]$	423	1180	835	542	171
12 AWG	$.159[4.0]$	40	110	79	51	16
RG178	$.075[1.9]$	180	500	356	231	73
2 AWG	$.486[12.3]$	--	12	--	--	--

* Oblong Opening Area Converted to Simple Diameter
(1) For 410123122 eight positions may be used.

NOTE: Addition of shrink tubing or braid will reduce maximum number of wires through bushing.
NOTE: If the wiring bundle is too small to secure with the adjustable bushing, remove the clamp assembly within the bushing by removing the two adjustment screws. Reverse the direction of the clamp assembly and secure with the two screws. This provides a reduced diameter within the bushing and allows smaller wire bundles to be held securely.
NOTE: The number of wires listed for the iConEMI may be affected by the mating component.

Tech Tip: Calculating the Maximum Wire Bundle Diameter

 wire bundle diameter. From this formula, the table below offers a sampling of the maximum number of wires that will fit in the oblong bushing.Wire bundle diameter (B) should not exceed the maximum oblong bushing effective diameter (A).

Formula to calculate approximate wire bundle diameter:

$B=1.2 \sqrt{ }\left(\mathrm{~N}_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{N}_{2} \mathrm{~d}_{2}{ }^{2}+\mathrm{N}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}}{ }^{2}\right)$		
$B=$ Wire bundle diameter	$N_{1}=$ Number of first wire type $\mathrm{N}_{2}=$ Number of second wire type $N_{n}=$ Number of $n^{\text {th }}$ wire type	$d_{1}=$ Outside Diameter of first wire type $d_{2}=$ Outside Diameter of second wire type $d_{n}=$ Outside Diameter of $\mathrm{n}^{\text {th }}$ wire type

i1 Oblong Bushing Effective Diameter* $(\mathrm{A})=1.11$ " [28.19]

i1 EMI Oblong Bushing Effective Diameter* $(\mathrm{A})=1.13$ " [28.7]

i2 MX Effective Diameter* $(A)=1.03$ " $[26.16]$
i1 XL Oblong Bushing Effective Diameter* $(\mathrm{A})=1.38^{\prime \prime}$
[35.05]

Wire Type	Outside Diameter	i1 XL \# Wires	i1 \# Wires	i1EMI \# Wires	i2 MX \# Wires
24 AWG	$.049[1.2]$	459	331	366	289
12 AWG	$.159[4.0]$	43	31	34	27
RG178	$.075[1.9]$	196	141	156	123
2 AWG	$.486[12.3]$	4	3	3	--
CAT6	$.246[6.2]$	18	13	14	11

* Oblong Opening Area Converted to Simple Diameter

NOTE: Addition of shrink tubing or braid will reduce maximum number of wires through bushing.
NOTE: If the wiring bundle is too small to secure with the adjustable bushing, remove the clamp assembly within the bushing by removing the two adjustment screws. Reverse the direction of the clamp assembly and secure with the two screws. This provides a reduced diameter within the bushing and allows smaller wire bundles to be held securely.
NOTE: The number of wires listed for the i1 EMI may be affected by the mating component.

Tech Tip: Calculating the Maximum Wire Bundle Diameter

Use the formula provided to calculate the maximum wire bundle diameter. From this formula, the table below offers a sampling of the maximum number of wires that will fit in the oblong bushing; for example the oblong bushing will hold a maximum of 516 Signal (20) wires OR 175 Coaxial (RG316) wires.

Wire bundle diameter (B) should not exceed the maximum oblong bushing effective diameter (A).

Formula to calculate approximate wire bundle diameter:

$B=1.2 \sqrt{ }\left(N_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{N}_{2} \mathrm{~d}_{2}{ }^{2}+\mathrm{N}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}}{ }^{2}\right)$		
$\begin{gathered} \mathrm{B}=\text { Wire bundle } \\ \text { diameter } \end{gathered}$	$\begin{gathered} \mathrm{N}_{1}=\text { Number of first wire } \\ \text { type } \\ \mathrm{N}_{2}=\text { Number of second } \\ \text { wire type } \\ \mathrm{N}_{\mathrm{n}}=\begin{array}{c} \text { Number of } \mathrm{n}^{\text {th }} \text { wire } \\ \text { type } \end{array} \end{gathered}$	$d_{1}=$ Outside Diameter of first wire type $d_{2}=$ Outside Diameter of second wire type $d_{n}=$ Outside Diameter of $n^{\text {th }}$ wire type

NOTE: If the wiring bundle is too small to secure with the adjustable bushing, remove the clamp assembly within the bushing by removing the two adjustment screws. Reverse the direction of the clamp assembly and secure with the two screws. This provides a reduced diameter within the bushing and allows smaller wire bundles to be held securely.

G2/G6/G10 Oblong Bushing Effective Diameter* $(A)=1.59$ " [40.13]

Wire Type	Outside Diameter	Number of Wires
20 AWG Signal- Teflon	.057	516
10 AWG Power - PVF	.142	83

* Oblong Opening Area Converted to Simple Diameter

NOTE: Addition of shrink tubing or braid will reduce maximum number of wires through bushing.

G2/G6/G10 Oblong Bushing Effective Diameter* $(A)=1.58$ " [40.13]

VPC Handheld ITAs Wire Exit Shape \& Size

